ASTRONOMY 1210

HELPFUL HINTS FOR FIRST MIDTERM

The first midterm will be on **Wednesday, February 19**. You will have the full class period (75 minutes) to complete it.

Coverage: The exam will cover all lectures and assigned reading in the textbook through Monday, Feb. 17. Reading assignments are on the Study Guides. The exam will cover Guides 1 through 8 and Chapters 1 through 4 (except section 4.5 on tides) in the Bennett text. You are not responsible for Chapter S1.

Emphasis: The emphasis will be more on the lectures than the textbook.

Style: The exam will be mainly objective (true/false, multiple choice) with some fill-in questions and a few brief answer (3-4 sentences) questions. The "puzzlahs" have provided good examples of the style of the questions that will be on the exam. You should also look at the "Exam Prep" link on the course homepage; that includes additional sample questions (with answers).

You must answer objective parts of the exam on scantron (bubble) sheets. I will supply those. Be sure to bring a #2 pencil with you.

You will *not* be asked to do computational problems on the exam. However, you will be asked to show what I call a *quantitative perspective*. Here is a sample of this kind of question:

If the mass of the Earth were doubled, the gravitational force exerted by the Earth on the Moon would: (A) stay the same; (B) double; (C) quadruple.

If you are uncomfortable with such semi-quantitative questions, don't worry about them, since the great majority of exam questions will not be of this type.

Review: I will hold a question-answer session covering the material on the exam on **Tuesday, February 18 at 6 PM in Gilmer 190** (not Clark 107). I will not give a formal review but will answer all questions concerning the material. Please come prepared with questions.

Things to Study:

All the *Study Guides* from the course home page and your *lecture notes*. You are not responsible for the material labeled *optional reading* except to the extent that it was discussed in class.

All the *reading assignments*; these are given for each lecture on the corresponding Study Guide.

The *key topics* listed on the reverse of this page.

Things to Ignore:

Numerical values of quantities such as the Earth's mass, the length of the Astronomical Unit, etc. However, you should be familiar with the *relative scales* of quantities we have discussed in class. For example: the Moon is about 1/4 the diameter of the Earth; the Sun is about 100 times the diameter of the Earth; and so forth. You should know how to put such concepts into *quantitative perspective* (as mentioned above).

The "Mathematical Insight" sections in the text.

Tabulated material such as the eclipse data in Table 2.1 or the energy comparisons in Table 4.1.

Specific historical *dates*, except to be able to place the progress of scientific thought into context. For instance, you should know that Tycho's observational work preceded Kepler's Laws; but you don't have to know the date of Kepler's birth. You don't need to know the *names* of secondary historical figures. (See over for names you should know.)

The "*Exercises and Problems*" sections in the text contain items that go beyond what we have covered in class. I do **not** recommend that you use these to review the material. Do, however, read the "*Summary of Key Concepts*" section.

KEY TOPICS

VS. IDEALISM, RELIGION SCALES OF SPACE/TIME

Introduction

SCIENCE: VALUESEMPIRICAL TESTINGASTRONOMY AS SCIENCE:INFLUENCE ON SOCIETYLIGHT TRAVEL-TIME DISTANCES"LOOKBACK" EFFECTSCALE & STRUCTURE OF THE GALAXY AND NEARBY UNIVERSETHE "TOP-10" FEATURES OF COSMIC HISTORY

The Night Sky

NAKED EYE MEASUREMENTS	OBSERVABLE PHENOMENA	
ANGULAR MEASURES	MAGNITUDES	CONSTELLATIONS
CELESTIAL SPHERE:	POLES, EQUATOR, ZENITH	
MOTIONS MEASURED AGAINST THE	STARS: SUN, MOON, & PLANETS	
DIURNAL MOTION	DAY VS. NIGHT	HORIZON
ANNUAL MOTION OF SUN	ECLIPTIC PLANE	ZODIAC
NORTH/SOUTH MOTION OF SUN	EQUINOXES, SOLSTICES	ORIGIN OF SEASONS

Ancient Astronomy

MOTIVATIONS FOR ASTRONOMY IN ANCIENT CULTURES				
HELIACAL RISINGS	HORIZON INTERCEPTS	BUILDING ALIGNMENTS: TYPES, EXAMPLES		
MAYA ASTRONOMY	The long count & 2012			
LUNAR PHASES & THEIR CYCLE	POLAR PRECESSION			
LUNAR & SOLAR ECLIPSES:	SHADOW GEOMETRY	CONDITIONS FOR ECLIPSE		
GREEKS: MAIN ACCOMPLISHMENTS	s in math & astronomy	ERATOSTHENE'S METHOD		
PTOLEMY'S MODEL:	GEOCENTRIC	ASSUMPTIONS		
	RETROGRADE MOTION IN	EPICYCLES		

Discovery of Gravity

COPERNICUS' MODEL:	HELIOCENTRIC	SIMPLICITY OF			
	RETROGRADE MOTION IN	"COPERNICAN PRINCIPLE"			
PARALLAX AS A FACTOR IN TESTING COPERNICAN MODEL					
TYCHO: IMPLICATIONS OF SUPERNOVA 1572		OBSERVATIONAL CONTRIBUTIONS			
GALILEO:	EXPERIMENTAL PHYSICS	REJECTION OF ARISTOTLE			
DISCOVERIES WITH TELESCOPE & THEIR IMPLICATIONS					
KEPLER: MODELS MUST AGREE WITH DATA		ELLIPTICAL ORBITS			
	K'S LAWS OF PLANETARY MOTION	SUN EXERTS FORCE			

Gravitional Orbits & Space Flight

NEWTON: LAWS OF DYNAMICS	THEORY OF GRAVITY	
GRAVITATIONAL ORBITS:	HOW DERIVED FROM NEWTON'S LAWS	
	TYPES: CONIC SECTIONS	ESCAPE VELOCITY
	CONSISTENCY WITH KEPLER'S LAWS	
	FREE-FALL ORBITS INDEPENDENT	OF MASS
BOCKETS & SPACE FLICHT		

ROCKETS & SPACE FLIGHT