
The IDLAstro Database System
(Version July 2001)

W.B. Landsman

Raytheon ITSS

August 10, 2009

1 INTRODUCTION

This document describes the use of an IDL database system that is available in the IDL
Astronomy Library (http://idlastro.gsfc.nasa.gov/). The database software was de-
signed by Don Lindler of the GHRS (Goddard High-Resolution Spectrograph) group, and
has been adopted by several astronomy groups. The software was originally written in 1987
(though modest improvements are made each year) and is a “flat” (as opposed to a relational
or object-oriented) database system. It is thus a “primitive” database system compared to
modern commercial alternatives but remains useful because it shares the IDL programming,
plotting, and image display syntax. This makes the database system very versatile and easy
to learn for those already familiar with IDL programming. In addition, the database software
can be run on any computer with IDL installed (Unix, Windows, MacOS, or VMS).

In discussing the database software, it is useful to have in mind a book copy of, for
example, the Yale Bright Star Catalogue 5th Edition called ‘YALE BS’ in the computer
database. (A copy of YALE BS and other IDL databases is available at
http://idlastro.gsfc.nasa.gov/ftp/zdbase/). The data for a specific star is contained
in one row, while column headings are placed at the top of a page. Similar concepts apply
to the computer database, and the following terms will be referred to constantly.

entry a “row” of a catalogue. The YALE BS catalog contains 9110 entries.

item a “column” of a catalogue. The YALE BS catalog contains 41 items including ‘HD’,
‘NAME’, and ‘V MAG’.

value the field corresponding to a specified entry and item. It can be either numeric or
a character string. For entry 1708 of the YALE BS catalog, item ‘NAME’ contains
a value of ‘ALP AUR’ and item ‘V MAG’ contains a value of 0.08. It is possible for
an item to be multiple valued. For example, the ‘COPERNICUS’ database contains
Copernicus spectra of 40 hot stars. In this case, the value of the item ‘FLUX’ for a
particular entry consists of 2250 numbers specifying the relative flux between 1000 and
1450 Å.

The managers of the IDL database would greatly profit by suggestions from the users. In
particular, the managers would appreciate hearing about (1) astronomical catalogues that
should be added to the database (2) improvements needed in the help files of a database or
items within a database, (3) catalogues that should be linked together via pointers (4) items
that should be indexed. (As explained below, indexed items require more disk space, but
can be searched much more quickly than non-indexed items.)

Section 2 of this document describes the six “core” database procedures, which may be
all that are ever required by the typical user. Section 3 discusses five more special-purpose
procedures and the concept of “pointers.” Section 4 gives instructions on how to create or
modify a database, and need only be read by would-be experts. This document is most
effectively read while sitting at a terminal, where the numerous examples can be worked out.

1

2 DATABASE FUNDAMENTALS

All of the database procedures begin with the letters “DB”. As with all other IDL procedures,
help on a specific database procedure can be obtained by typing man,‘<procedure name>’.
These help files provide more detailed information than is given in this document. Although
there exist a total of 35 database procedures, the following six “core” procedures will often
be all that are required by the user.

DBOPEN Open a catalogue for subsequent processing.

DBHELP Display information on catalogues, or items within a catalogue.

DBFIND Find entries meeting specified search criteria.

DBPRINT Print catalogue information of specified entries and items.

DBEXT Extract specified values as vectors for subsequent processing with IDL.

DBCLOSE Close a catalogue.

In addition to the “core” procedures above, there are seven other database procedures that
may be used occasionally.

DBCIRCLE Search for entries in positional catalogue within a specified radius of a speci-
fied center

DBGET Use instead of DBFIND when search values are in an IDL vector.

DBMATCH Find one entry for each element of a vector of item values.

DBSORT Sort a list of catalogue entries by any item.

DB OR Remove duplicate values from a list of entries.

IMDBASE Find entries within an image with a specified FITS header

TVDBASE Overlay position of entries within image with a specified FITS header

The rest of the 35 database procedures are either low-level, or used for building databases
(see section 4).

2

2.1 DBOPEN and DBHELP

The database commands discussed here should all be entered in response to the IDL prompt.
To list the names of the online catalogues, one simply types DBHELP. Alternatively, the
command DBHELP,1 will print a one-line description of all catalogues, and the command
DBHELP,<name> will print a description of a specified database. Before any further work
can be done with a database, it must be opened with the DBOPEN command. If later,
one decides to work with another catalogue, then the DBOPEN command must be used
again. DBOPEN will close the first database and open the second. Once a database has
been opened, DBHELP is used to give the name, type of data, and brief description of items
within the database. (If an item is multiple-valued, then a number in parentheses will appear
beside the item name.) The command DBHELP,1 will also show which items are indexed,
and thus much quicker to search on. The following example illustrates these ideas:

$IDL !Get into IDL

DBHELP ;List the names of all databases

DBHELP,1 ;Give a one-line description of all databases

DBHELP,’PTL’ ;Print a brief description of the ASTRO Program
Target List (PTL) database

DBOPEN,’PTL’ ;Open the PTL database

DBHELP ;Print the names of all items in the PTL

DBHELP,1 ;Give the datatype and a brief description of all items
and show which ones are indexed

DBHELP,’JOTFID’ ;Print a description of the JOTFID item

DBOPEN,’SAO’ ;Close the PTL catalogue and open the SAO catalogue

DBCLOSE ;Close all catalogues

The output device of all the database procedures is controlled by the TEXTOUT keyword.
The default output device (TEXTOUT=1) is the user’s terminal. Set TEXTOUT=3 to
direct output to a disk file with a default name, or set TEXTOUT = ‘filename’, to specify
the output file name. The non-standard system variable !TEXTOUT can also be used
instead of the TEXTOUT keyword. The documentation for the TEXTOPEN procedure
gives a complete description of the TEXTOUT keyword.

For example, if no database has yet been opened, then the following commands would
write a one-line description of all catalogues to a disk file.

DBHELP,1,TEXT = 3 ;Write a one line description of all catalogues to a disk
file DBHELP.PRT

DBHELP,1,T=’db.txt’ ;Write a one line description to a file db.txt

2.2 DBFIND

The function DBFIND is used to select the entries of interest in a catalogue. The general
format of the DBFIND call is

3

LIST = DBFIND(‘SEARCH CRITERIA’,[SUBLIST])

LIST is an IDL longword output vector containing the desired entry numbers. It is sub-
sequently used either by DBPRINT to display the desired entry values, or by DBEXT to
extract item values for plotting or analysis. SUBLIST is an optional input parameter that
restricts the search to a subset of the catalogue. SEARCH CRITERIA is a string or string
array that contains the desired search items. Search criteria can be selected in seven different
ways. For example, the JOTFID item (Joint Target File ID) in the PTL database could be
searched in the following ways:

Search Format Example

(1) ITEM = value JOTFID = 8102
(2) ITEM = [value1,value2] JOTFID = [8104,8105]
(3) ITEM = min value < ITEM < max value 7000 < JOTFID < 7999
(4) ITEM > min value JOTFID > 3000
(5) ITEM < max value JOTFID < 2999
(6) ITEM = value(tolerance) JOTFID = 5000(2000)
(7) ITEM ;non-zero value JOTFID

The > and < signs in (3) – (5) are interpreted as less than or equal to (i.e. example (5)
would include all jotfid numbers up to and including 2999).

You can use two or more search criteria at the same time by separating the individual
criteria with commas. For example, to find the UIT observations of normal galaxies (6000
≤ JOTFID ≤ 6999) in the ASTRO target list,

dbopen,’PTL’ ;Open the Program Target List

list = dbfind(’U=U,6000 < jotfid <

6999’)

;Specify UIT target, JOTFID range

Suppose, one now one wants to further restrict the list found above to targets in the northern
hemisphere. The DBFIND search could be repeated adding the additional search criterion
’dec > 0’. However, it would be quicker to restrict the search for positive declinations to
the entries that have already been selected and stored in the vector LIST:

newlist = dbfind(’dec>0’,list)

When using DBHELP to display the contents of a catalogue, certain items are identified
as being “indexed.” Indexed items can be searched much faster than non-indexed items. Use
indexed items whenever possible in your search criteria. (The reason that not every item is
indexed is that such items require more disk space.) For example, one could find the star α

Aur in the SKYMAP star catalog as follows:

dbopen,’skymap’ ;Open the SKYMAP catalog

list = dbfind(‘name = alp aur’) ;Slow non-indexed search for the star
name

4

but the search will take a couple of minutes since NAME is not an indexed item. On the
other hand, a search on the HD number will be almost instantaneous.

list = dbfind(‘hd=34029’) ;Fast indexed search on the HD number

The most commonly used items with DBFIND are probably those pertaining to position.
All of the positional databases will have an indexed item named RA in decimal hours, and
an indexed item named DEC in decimal degrees. In addition, another set of non-indexed
items may exist (e.g. RA 1950, DEC 1950) which store the position as character strings.
These latter items are used for pretty output with DBPRINT, and should not be used with
DBFIND. A nice feature of DBFIND is that it recognizes numbers separated by colons as
being in sexigesimal format (e.g. 45:30 = 45.5). For example, to determine if 3C273 is an
IRAS source, we could search on the known position with a 15′′(= 1s) tolerance:

dbopen,‘iras psc’ ;Open the IRAS point source catalog

list = dbfind(’ra = 12:26:33.3(0:0:1),

dec=2:19:43(0:0:15)’)

;Search on known position of 3C273

dbprint,list,‘*’ ;Print all items in table format

The colons can be used with any item, although, of course, the use of sexigesimal format
is most common with RA and Dec. The help file for DBFIND can be read to learn how
to use slashes and dashes to encode the date and time. However, be aware that arithmetic
operations cannot be done within the search criteria string of DBFIND; if the right ascension
is 30 degrees, then conversion to hours must be done before the DBFIND call

list = dbfind(’ra=30/15.’) ;ILLEGAL statement - do not try this!

By default, string searches are matched whenever the supplied string appears anywhere
in an item. Thus, in the YALE BS catalog

list = dbfind(’name = tau’)

will find all stars with the three characters ‘tau’ appearing anywhere in their name. The
search is case insensitive and leading and trailing blanks are ignored. The /FULLSTRING
keyword to DBFIND can be used if you want all characters in the database value to match
the search string (i.e. no substring matches). One can also use the same item twice in a
search. Thus

list = dbfind(‘name = tau,name=eri’)

will find all stars (nine of them!) with the substrings ‘tau’ and ‘eri’ in their name.

2.3 DBPRINT

DBPRINT will display selected fields of database on the device specified by the TEXTOUT
keyword. The basic calling sequence is:

DBPRINT, LIST, ITEMS, TEXTOUT = , FORMS =

5

where LIST is a vector of entry numbers (e.g. as found with DBFIND), and ITEMS is a list
of the desired items to print. One line of output will be generated for each entry printed,
and fields will be printed with appropiate headings. (Page overflow will occur if the item
list doesn’t fit on a single line – 80 characters for a typical terminal and 132 characters for
a line printer). The list of items to be used can be specified in six different ways:

dbprint,list Display default items

dbprint,list,’’ ;Interactively select items via menu

dbprint,list,’jotfid,id1,id2’ ;Items are in a single string

dbprint,list,[’jotfid’,’ id1’,’ id2’] ;Items are in a string array

dbprint,list,’$FILENAME’ ;Items are in a disk file named
FILENAME, (one item per line)

dbprint,list,indgen(3)+1 ;Use items 1-3, (Item 0 is always the entry
number)

dbprint,list,’*’ ;Select all items and print in table format

An useful variant of the first form of DBPRINT is to pass either an undefined variable or an
empty string as the ITEMS parameter to DBPRINT. A full screen menu will appear, and
the items to be printed can be selected with the mouse. The items selected will be returned
in the ITEMS variables, so that one can skip the menu on subsequent calls to DBPRINT.

f = ’’ ;Define an empty string

dbprint,list,f ;Interactively select items via menu, print,
and return items list in f

dbprint,list,f,text=3 ;Print to a disk file with items previously
selected

The list of entry numbers can be either the output of DBFIND, or a scalar or vector directly
specified by the user. Set LIST = −1 to print all entries. Entry numbers begin with 1, so
that supplying an entry number of zero may give nonsensical results.

dbopen,’ptl’ ;Open the PTL database

items = indgen(9)+1 ;Select first 9 items for printing

dbprint,132,items ;Print selected items of entry 132

dbprint,indgen(50)+1,items ;Print selected items of first 50 entries

dbprint,-1,items ;Print selected item, all entries

2.4 DBEXT

DBEXT allows one to extract item vectors from a database for plotting or subsequent anal-
ysis. Its basic calling sequence is

DBEXT,LIST,ITEMS,V1,V2.,...V12

The parameters LIST and ITEMS have the same meanings as in the DBPRINT command.
The outputs V1,V2,. . . are the IDL variable names to be filled with the values of the specified

6

items. For example, to produce a scatter plot of the right ascension and declination of all
targets in the PTL:

dbopen,’ptl’ ;Open the Program Target List

list = dbfind(’ra<24.’) ;Solar system objects have RA=99.9

dbext,list,’ra,dec’,r,d ;Extract RA and dec

plot,r,d,psym=3 ;Plot RA vs. Dec for all Astro targets

Thanks to WUPPE and BBXRT, the observed distibution of targets shows some concentra-
tion toward the galactic plane.

For another example, de Lapparent et al. (Ap. J. (Letters), 302, L1) have used the CFA
redshift survey to display a “slice of the universe”. Figure 1 in their paper (the so-called
“dancing man”) was obtained by plotting galaxy velocity (distance) versus right ascension.
The galaxies were restricted to the declination wedge 26.5o ≤ δ ≤ 32.5o , and also mB ≤ 15.5,
and V ≤ 15000 km s−1 . The following IDL statements will quickly create a rough version
of this plot.

dbopen,’REDSHIFT’ ;Open the CFA Redshift Catalogue

list = dbfind(’26.5 <dec< 32.5,
b mag< 15.5, 1 <vhelio< 15000’)

;Select galaxies meeting search criteria

dbext,list,’ra,vhelio’,ra,vhelio ;Extract RA and velocity vectors

plot, ra, vhelio, psym=3 ;Plot projection of galaxies on the
RA-Vhelio plane

In this example, galaxies for which a redshift has not been determined were assigned a
velocity of zero. Therefore, it was essential that the search on the VHELIO item had a lower
limit of 1 and not 0.

It is possible for an item to contain more than one value for a particular entry. This
is often true for databases containing spectra, where the wavelength and flux items will
be multiple-valued. For example, to plot a spectrum of η Uma (HR 5191) from the TD-1
spectrophotometric catalog:

dbopen,’TD1 SPEC’ ;Open spectrophotometric catalog

dbhelp,’FLUX’ ;Read how to create wavelength array

w = [1360. + findgen(60)*20., 2740.] ;Wavelength array is 1360 Å – 2540 Å at
20 Å resolution plus 2740
Å photometer

list = dbfind(’bs no = 5191’) ;Find entry number for η Uma

dbext,list,’flux’,f ;Extract 61 element flux vector

plot,w,f ;Plot flux vs. wavelength

The TD1 SPEC catalog does not include an item for the wavelength array because it is
the same for each entry; instead the help file for the item FLUX tells how to construct the
wavelength array in a single IDL statement. Note that if more than one entry number were
supplied to DBEXT, then the output flux vector would be 2 dimensional, with the first
dimension containing the 61 flux values for a particular entry.

7

The DBEXT command can be combined with the WHERE function of IDL to perform
searches on fields not directly present in the catalogue. As an example, we will use the
IRAS point source catalog to search for infrared selected high luminosity galaxy and quasar
candidates (AGNs).

Following Low et al. (1988) (Ap. J. (Letters), 327, L41) we set our search criteria to
be (1) a 25 to 60 micron flux ratio of 0.25 < F25/F60 < 3, (2) a galactic latitude greater
than 30o , and (3) no previous identification from a stellar catalog. (As a prerequisite for
criterion (1), the sources must have measurable fluxes at 25 and 60 microns.) Search criterion
(1) cannot be performed using DBFIND since F25/F60 is not an item in the database.
Instead one must extract the F25 and F60 vectors with DBEXT, form the ratio, and use the
WHERE function to select the desired range. Similarly, since the catalogue does not include
galactic coordinates, one must DBEXT the RA and DEC, and then convert to galactic
coordinates. Criterion (3) presents a minor problem because DBFIND does not allow a “not
equal to” search criterion; however, one can explicitly search on the catalog identifications
(item IDTYPE) that are not stellar (IDTYPE = 2).

dbopen,‘iras psc’ ;Open IRAS point source catalog

list = dbfind(‘idtype =[0,1,3,4],

25 fqual>2, 60 fqual>2’)

;Not in stellar catalogs, detected at 25
and 60 microns

dbext,list,‘60 flux,25 flux’,f60,f25 ;Extract 25 and 60 micron flux vectors

ratio = f25/f60 ;Form 25 to 60 micron flux ratio

list = list(where ((ratio gt 0.25) and

(ratio lt 3.0)))

;Ratio to select for AGNs

dbext,list,‘ra,dec’,ra,dec ;Extract RA and DEC vectors

euler,ra*15.,dec,l,b,1 ;Convert to galactic coordinates

list = list(where ((b gt 30) or (b lt

-30)))

;Select high galactic latitude objects

dbprint,list,‘name,b mag,

12 flux,25 flux,60 flux,100 flux

;Print name and IRAS fluxes of selected
sources

The above sequence of commands above will run slowly because the 25 fqual, 60 fqual
items are not indexed, and because not all the desired search items (e.g. galactic coordinates)
are in the database. Should similar searches of the IRAS catalog be required often, then the
database manager should include and index the desired items.

3 Advanced Databasing

3.1 DBCIRCLE

DBCIRCLE can be used to search a catalog for all sources within a specified radius of a
given position. For example, suppose one wants to determine if any quasars are within the
20′ UIT field of the star AE Aqr (JOTFID number 3226).

dbopen,’PTL’ ;Open the ASTRO Program Target List

8

l = dbfind(’jotfid=3226’) ;Get entry number of JOTFID 3226

dbext,l,’ra,dec’,ra,dec ;Extract the Ra and Dec of this star

dbopen,’quasars’ ;Open Hewitt and Burbidge (1989)
Quasar catalog

list = dbcircle(ra,dec,20,dis) ;Find sources within 20′ of given RA and
Dec

DBCIRCLE will display that 3 entries were found in the quasar catalog, and place the entry
values in the vector list. The vector dis contains the distance (in arc minutes) of each
quasar found to the specified field center.

3.2 DB OR

The DB OR function concatenates the entries found in two different lists, while removing
duplicates. For example, suppose one wants to identify the Astro targets that are either
WUPPE or HUT targets. The command

list = dbfind(’H=H,W=W’)

will identify targets that belong to both HUT and WUPPE. To find targets that belong to
either instruments, one must perform two searches and concatenate the results.

list1 = dbfind(‘H=H’) ;Get entry numbers of HUT targets

list2 = dbfind(‘W=W’) ;Get entry numbers of WUPPE targets

list = db or(list1,list2) ;Combine entry vectors and remove
duplicates

Of course, IDL allows one to combine the three steps above into a single step:

list = db or(dbfind(‘H=H’), dbfind(‘W=W’))

3.3 Sorting

Up to this point all results were printed in the order stored in the database (by entry number).
The procedure DBSORT will sort an entry list on up to nine sort items. Its calling sequence
is

SORTLIST = DBSORT(LIST,‘item1,item2 ...’)

where LIST is the input list of entry numbers and SORTLIST is the sorted list. Item1 is the
primary sort item, item2 the secondary, and so on. For example, the following statements
will produce a printout of all IUE high-dispersion observations of the nuclei of of planetary
nebulae, (object class 70) sorted by right ascension:

dbopen,‘IUE’ ;Open the IUE catalogue

list = dbfind(‘obj class = 70,disp=h’) ;Specify object class, dispersion mode

9

sortlist = dbsort(list,‘ra,image’) ;Primary sort is by RA, secondary by
image number

dbprint,sortlist,

‘object,ra 1950,dec 1950,cam no,image’

;Print selected items

3.4 DBGET

Suppose one has a list of five IUE SWP images, and wishes to obtain information about the
observational parameters. DBFIND can be used to find the entry numbers

list = dbfind(‘cam no=3,image=[3427,15191,20227,29992,30022]’)

The SWP camera is camera number 3, and the individual images are identified. For a larger
number of images, however, this use of DBFIND breaks down. It is awkward to write each
image value in a string, and, in fact, DBFIND can only parse 10 individual values. What is
needed is a function that can search on values in an IDL vector, and this is why DBGET
was created.

images = [3427,15191,20227,29992,30022] ;Values are in an IDL vector

list = dbfind(‘cam no=3’) ;Restrict search to SWP camera

list = dbget(‘IMAGE’,images,list) ;Search on “images” vector

One limitation of DBGET is that it can only be used with one item at a time. Be aware
that the number of entries returned by DBGET might not equal the number of values in
the search vector; if, for example, an image number is missing, or appears twice (e.g. as
both large and small aperture). The function DBMATCH should be used if a one-to-one
correspondence is desired between the elements of the search item vector and the found
entries.

3.5 DBMATCH

Suppose one wants to find the Gliese catalog number of every star in the Yale Bright Star
catalog. Both these catalogs contain an HD item, so one can extract the HD numbers from
the Yale Bright Star Catalog, and then use this vector to search for entries in the Gliese
catalog.

dbopen,‘YALE BS’ ;Open the Yale Bright Star Catalog

dbext,-1,‘HD NO’,hd ;Extract the HD number for all stars

dbopen,‘GLIESE’ ;Open the Gliese Catalog of Nearby Stars

gl = dbmatch(‘HD NO’,hd) ;Find Gliese numbers of specified HD
numbers

The output vector gl will contain 9110 elements – one for each entry in the Yale Bright Star
catalog. Stars not in the Gliese catalog will contain a value of 0 in the gl vector. DBGET
could be used to find all the Gliese numbers of stars in the Yale Bright Star catalog, but it

10

would not keep track of which Gliese number went with which star. DBMATCH is slower
than either DBFIND or DBGET because it must loop over each element of the item search
vector. However, DBMATCH is very useful for building a “pointer” from one catalog to
another.

3.6 Pointers

It often happens that the entries in two different catalogues can refer to the same object. It
is then possible to open both catalogues simultaneously, and for the entry in catalogue 1 to
“point” to the entry in catalogue 2 corresponding to the same object. The user can then
print, or search on, items from either catalogue. For example, suppose one wants a printout
of comments that have been written about the ASTRO targets, along with the names of
the instrument(s) associated with each target. The comments are given in the PTLCOM
database, while the instruments are given in the PTL database.

dbopen,’PTL,PTLCOM’ ;Open both the PTL and the PTLCOM
databases

list = dbfind(’flag com’) ;Item is non-zero when comments exist

dbprint,list,’jotfid,id1,h,w,u,b,lcomm’ ;Print instrument and comments

Use DBHELP to learn if one catalogue points to any others. You cannot simultaneously
open databases which do not have pointers already built in by the database manager.

4 Creating and Modifying a Database

4.1 Introduction

A database actually consists of four disk files, each identified with a unique 3 letter exten-
sion. For example, the PTL database consists of the four files, ptl.dbd, ptl.dbh, ptl.dbf, and
ptl.dbx. The .dbd file is an ASCII file that contains all the item definitions, print formats,
pointers etc. The .dbh file contains a list of all items and item titles stored in binary format
for quick access. The .dbf file contains all the data stored in binary in entry order. Finally,
the .dbx file contain the values of all the indexed items stored in binary in item order. The
table below summarizes the four database files.

.dbf DataBase File Binary Row-ordered data

.dbh DataBase Contents Binary Title and item descriptions

.dbx DataBase indeX Binary Indexed and sorted data

.dbd DataBase Definition ASCII User-supplied item characteristics

In addition to these four files, the user can create ASCII help files as necessary. For
example, the file YALE BS.HLP will be printed when no database has been opened and
the user types dbhelp,’yale bs’. The file YALE BS DBLE NAME.HLP will be printed if

11

the YALE BS database has been opened, and the user types DBHELP,‘DBLE NAME’. A final
optional file for a database is an ASCII file with the extension .ITEMS. This file lists the
default print items (one per row) to be used when the user types DBPRINT,LIST.

The steps a user must follow to create a database are as follows:

• Define the logical name (VMS) or environment variable (UNIX) ZDBASE to point to
the directories containing the catalogues. To identify where existing database files are
located, type $sho logical zdbase (VMS) or printenv ZDBASE (Unix).

• Create a database definition .dbd file using a text editor

• Use DBCREATE to create the .dbh file, and empty versions of the .dbx and .dbf files

• Fill the .dbx and .dbf files with data usually using the DBBUILD procedure. Alter-
natively, entries can be written one at a time into the .dbf file with DBWRT, and the
.dbx file can filled using DBINDEX.

4.2 The .dbd file

The critical step in creating a database is making the database description (.dbd) file. Re-
produced in full below is a .dbd file for a data base that will be called EXAMPLE.

example.dbd

#title
Example of a Database catalogue

#maxentries
1356

#items
CAT NO I*2 Catalogue Number
BS NO I*4 Bright Star Number
RA 2000 C*10 RA (2000)... Use RA for search
DEC 2000 C*9 Dec (2000)... Use Dec for search
FLUX(61) R*4 Flux (x 10[-10]), 1380A - 2740A)
RA R*4 RA (J2000, hours)...Use for Search
DEC R*4 Dec (J2000, degrees)...Use for Search

#formats
ENTRY I6 Entry
CAT NO I4 TD1,No
BS NO I6 Bright,Star,No

12

RA 2000 A10 RA,(2000)
DEC 2000 A10 Dec,(2000)

#index
CAT NO index
BS NO sort/index
RA sorted
DEC sort

#pointers
BS NO yale bs

A .dbd file contains several “block” headers identifiable by a preceding pound sign “#”.
The #title and #items blocks are required, the #maxentries and #formats blocks are
strongly recommended, while the #index and #pointers blocks are optional.

#title Underneath the #title header should be a one line description (50 characters or less)
of the database that will be displayed with DBHELP. The actual name of the database
(to be used with DBOPEN) is the same as the name of the .dbd file.

#maxentries Underneath the #maxentries header should be a single number giving the
maximum number of entries one expects to be in the database. The only cost in making
the value of #maxentries too large is that extra disk space will have to be allocated for
the index files. On the other hand, if the value of #maxentries is less than the actual
number of entries, then you will not be able to create the index file.

#items This required block contains three columns of information. The first column con-
tains the name of every item. Multiple valued items should have the number of values
per entry put in parentheses next to the item name. The second column gives the
datatype of every item. Acceptable values of datatype include R*4, I*2, I*4, R*8, L*1
or B*1. Since IDL V5.2 64 bit integers (I*8) and unsigned integers (U*2, U*4, U*8)
are also allowed datatypes. The datatype of a string item should be written as C*[n]
where [n] is the string length. The last column gives a brief description of the item
that will be used with DBHELP.

#formats This block lists the item name, print format, and print heading. If an item is
not listed here, then it is given the default IDL print format for its datatype (e.g. I7
for I*2 data), and the item name is used for the print heading. Each print heading
consist of three rows, so that a heading can consist of up to three words separated by
commas. However, each word must fit into the space allocated by the print format;
e.g. a heading for the item BS NO (format I6) will be truncated after 6 characters.

13

#index This block lists the indexed items and their index types. There are four ac-
ceptable index types; “index”, “sorted”, “sort”, and “sort/index”. The values of
an “index” item are copied in entry order to the index file; this allows the values
to be extracted quickly. The values of a “sort” item are copied to the index file
in numeric order (i.e sorted), along with a lookup table relating the numeric order
to the entry order. “Sort” items can therefore be searched very quickly. ‘Sorted’
items are assumed to have entry order already coincident with numeric order, and
the “sorted” index should be used whenever it is allowed. For example, some cata-
logs are listed by increasing right ascension, which would allow RA to be a “sorted”
item. Neither multiple-valued items nor string items are allowed an index type of
“sort” or “sorted”. Finally, the values of a “sort/index” item are copied in both en-
try order and numeric order to the index file. This type is mainly used for items
which are used to “point” at another database (see below). The following table
summarizes the relative disk space and search speed of the different index types.
Index Disk Search Extraction Comment
Type Space Speed Speed

None 1 Slow Slow
Index 2 Moderate Fast
Sorted 3 Very Fast Fast Item must be in entry order
Sort 4 Fast Slow Multiple and String items not allowed
Sort/Index 5 Fast Fast Multiple and String items not allowed

#pointers The #pointers block contains the names of items that point to the entry num-
bers of another catalogue. In our example, BS NO points to the entry number in the
Yale Bright Star catalogue. Item that serve as pointers must be either index type
“index”, “sort/index” or the item ENTRY.

The database software has no features specific to astronomy. However, in order that
general position-search software can be written, it is useful to have an established
convention as to the labeling of right ascension and declination. This convention is that
right ascension should be stored in hours in the (searchable) item RA, and declination
stored in degrees in the item DEC. The item description should include the equinox of
the coordinates (e.g. J2000 or B1950).

4.3 Adding or Modifying Data

Once a database description (.dbd) file has been created, adding and modifying data is
relatively easy. The procedure DBCREATE is used to create the contents (.dbh) file, and
optionally, new copies of the data (.dbf) and index (.dbx) file. Its basic calling sequence is

DBCREATE,‘<DATABASE NAME>’,[NEWINDEX,NEWDB]

14

where NEWINDEX is non-zero to create a new .dbx file, and NEWDB is non-zero to create
a new .dbf file. DBCREATE requires that the user set the system variable !PRIV=2; this is
to prevent novice users from accidently corrupting the database.

It assumed that the user has been able to read the data into IDL vectors. (The procedures
READCOL, RDFLOAT, and READFMT are extremely useful for reading raw data from
ASCII files into IDL vectors.) For example, to create the EXAMPLE database from the pre-
vious section, the user should have vectors named, say, CAT,BS,RA 2000,DEC 2000,FLUX,RA,
and DEC corresponding to each of the items. The database must then be opened for update
by adding a second parameter to the DBOPEN command. It is also necessary for the user
to have sole access to the database; an error message will result if one tries to update a
database while another user is reading it. Finally, the database is loaded with the procedure
DBBUILD as follows:

!PRIV=2 ;Set !PRIV to create or modify database
files

dbcreate,‘EXAMPLE’,1,1 ;Need new index and data files

dbopen,‘EXAMPLE’,1 ;Open the database for update

dbbuild,cat,bs,ra 2000,dec 2000,flux,

ra,dec

;Load IDL vectors into database

If DBCREATE is supplied with an /EXTERNAL keyword then the data and index files are writ-
ten in IEEE format, and the database can be shared by machines with different architectures
(e.g. Suns and Vaxes). However, there is a substantial overhead for the use /EXTERNAL
format on machines which do not internally use the IEEE format.

To modify the item titles or print formats in an existing database, one simply edits the
.dbd file with the new information, and then types DBCREATE. There is no need to create
new .dbx or .dbf files. If, however, one wants to change the index type of an item or set of
items, then a new .dbx file must be created and built with DBINDEX.

!PRIV=2 ;As always

dbcreate,’EXAMPLE’,1 ;Create a new index file

dbopen,’EXAMPLE’,1 ;Open database for update

dbindex ;Make the index file

There are several ways to append or modify the actual data in a database. To append new
entries, the DBBUILD command can again be used, but without first calling DBCREATE,
since the data in the existing .dbx and .dbf files must remain. The procedure DBUPDATE
can be used to load new item values into a database. DBUPDATE can be viewed as the
inverse of DBEXT – instead of extracting item vectors, it will insert them. For example,
suppose the RA and DEC items are in 1950 equinox, and one wants to convert them to 2000
equinox.

!PRIV=2 & dbopen,’EXAMPLE’,1 ;Ultimately, will update database

dbext,-1,’RA,DEC’,ra,dec ;Extract RA and Dec vectors

ra = ra*15. ;Convert to degrees

15

precess,ra,dec,1950,2000 ;Convert to 2000 equinox

dbupdate,-1,’RA,DEC’,ra/15.,dec ;Load new values of RA and Dec

Finally, the procedure DBEDIT is useful for editing individual item values. For example,
suppose a database has values of V MAG set to 99.9 whenever the visual magnitude was
unknown. Once these values become known they can be inserted by hand into the database:

!PRIV=2 & dbopen,’EXAMPLE’,1 ;Open for update

list = dbfind(’V MAG=99.9’) ;Get entry numbers with bad V MAG

dbedit,list,’V MAG’ Interactive editing of selected entries

DBEDIT will display the existing value of an item, and prompt the user whether to keep or
replace it.

16

5 APPENDIX: ONLINE CATALOGS

This appendix lists the IDL databases available at http://idlastro.gsfc.nasa.gov/ftp/zdbase/.
Use DBHELP to obtain a more complete and up-to-date listing.at your local installation.

General Catalogues and Databases # of Entries Name

Abell Rich Clusters of Galaxies 5250 ABELL
EUVE 2nd Source List (1996) 514 EUVE
Gliese Catalog of Nearby Stars 3,802 GLIESE

Preliminary 3rd Edition (1991)
Hipparcos Catalog (1997) 118218 HIPPARCOS
Hipparcos Input Catalog (1992) 118218 HIC
Catalogue of HST observations (2000) 234,069 HST CATALOG
IRAS Point Source Catalogue 255,578 IRAS PSC
IUE Merged Log Catalogue (1997) 116,736 IUE
Nearby Galaxies Tully (1988) 2367 NEARBY GAL
New General Catalog (NGC) objects (1988) 13,226 NGC2000
Position and Proper Motion (PPM) catalog 468,907 PPM
Catalogue of Principal Galaxies (Paturel et al. 1989) 73,197 PRIN GAL
Quasars and AGN 10th ed. 30,119 QUASAR AGN

Veron-Cetty and Veron (2001)
Catalog of Quasars and BL Lac Objects 7,315 QUASARS

Hewitt and Burbidge (1993)
3rd Reference Catalog of Galaxies 23,022 RC3
CFA Redshift Survey (1995) 57,536 REDSHIFT
Catalogue of White Dwarfs 4th ed 4,401 WDWARF

McCook and Sion (1998)
Yale Bright Star Catalogue 9,110 YALE BS

Preliminary 5th Edition (1991)

17

