
ASTR 511/O’Connell Lec 12 1

EXPOSURE TIME ESTIMATION

An essential part of planning any observation is to estimate the total
exposure time needed to satisfy your scientific goal. General considerations
are described in Lecture 7. A number of on-line “Exposure Time
Calculators” (e.g. at STScI) provide examples of sophisticated estimators.
Here, we discuss the basics of this process.

From Lecture 7.F, we can re-write a general expression for the
signal-to-noise ratio for digital array photometry as follows:

SNR =
Nṡ t√

Nṡ t + N(1 + N
M

)
(
ḃt + ḋt + n2

RON

) (1)

Here, ṡ and ḃ are the mean rates at which source photons and sky
background photons, respectively, are detected per pixel. t is the total
integration time. ḋ is the dark count rate per pixel, and nRON is the readout
noise per pixel (quoted in numbers of equivalent electrons of noise). We
assume the source was measured with a virtual aperture containing N pixels
and the background with an aperture of M pixels, where M ≥ N .

This expression is usable for either a compact (e.g. point-like) source or an
extended source. In the case of a compact source which is completely
contained within the N pixel source aperture, ṡ = Ṡ/N , where Ṡ is the
total source photon detection rate.

The next question is how to estimate the photon rates appearing in this
expression, starting from an estimate of the flux of the source at the top of
Earth’s atmosphere. It is straightforward to do this.
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The flux of detected photons (counts per second per cm2) at the detector
for a given source will be:

Φi =
π
4
D2

e
π
4
(βL)2

∫
e−k(λ) sec Z Ti(λ)

Fλ(λ)

hν
dλ (2)

Here:

De is the effective diameter of the telescope after correction for central
obscuration. (The correction can be significant, depending on the
optical design.)

β is the angular diameter of the source (radians). β = 4.85 × 10−6 βs,
where βs is the angular diameter in arcseconds.

L is the effective focal length of the optical system feeding the detector.

k is the “extinction coefficient” for absorption in Earth’s atmosphere.
(This is small, . 0.2 except in the near-UV and can usually be ignored
for ET estimates.) k is smaller for higher altitude observatories. An
extinction curve for Mauna Kea is shown in Lecture 4.

sec Z is the secant of the “zenith distance” angle. This quantity is also
known as the “air mass,” since it gives the total atmospheric path
length toward the source in terms of the vertical thickness of the
atmosphere.

Ti is the net system optical efficiency. This includes the fractional
transmission of the optical system, including the telescope and all other
optical elements preceding the detector, and the detector quantum
efficiency.

Fλ(λ) is the spectral flux density of the source, in energy units per unit
wavelength, at the top of Earth’s atmosphere. For an extended source,
enter F ′

λ(λ), the mean spectral flux density per square arcsecond, and
set βs = 1.
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Estimating Fλ(λ):

If you can estimate mλ, the monochromatic magnitude of the source,
then:

Fλ(λ) = 3.63 × 10−9 10.0−0.4 mλ(λ) erg s−1 cm−2 Å
−1

for any wavelength.

More commonly, you have an estimate of the source brightness in a
particular band of a broad-band magnitude system. If the magnitude in
band i is mi, then

< Fλ(λ) >= F0,i 10.0−0.4 mi erg s−1 cm−2 Å
−1

where F0,i is the flux zeropoint for band i. The best compilation of
such zeropoints is by Bessell et al. (A&A, 333, 231, 1998; Table A2).
See Lecture 13 for more details. The estimate here is, of course, for the
mean flux within the band.

For an extended source, you would substitute µλ(λ), in standard units
per square arcsecond, for m in the expressions above. See Lecture 2 for
the definition of µ.
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Estimating T (λ):

Accurate determinations of the total optical efficiency of a system can
only be made after observing calibrator sources. However, the following
rules of thumb serve adequately in the absence of more detailed
information.

T (λ) is the product of the transmissions of each optical element in the
system and the detector quantum efficiency.

T (λ) ≈ rnm
m (λ) r

2 nl
l (λ) Rf(λ) Q(λ)

Here:

rm is the reflectivity of a mirror and nm is the number of mirrors in
the optical path. For fresh aluminum coatings on mirrors rm ∼ 0.88
in the optical bands. Silver has better IR reflectivity but poorer blue
reflectivity. In the UV, special coatings such as MgF or LiF are used.

rl is the transmissivity of a single glass-air interface and nl is the
number of refractive elements in the optical path. For normal
glasses in the optical band, rl ∼ 0.95. Should include dewar
windows, etc., in this factor.

Rf(λ) is the filter (or grating, prism) transmission curve. Typical
glass filters have < R >∼ 0.40 − 0.90 (including the effects of the
glass/air interface). Inteference filters have generally lower values.
Since it is usually easy to look up filter properties, and filter
responses vary dramatically, this is one term that you should try to
estimate accurately.

Q(λ) is the quantum efficiency of the detector. Again, this can
usually be looked up.

This expression assumes no other light losses (e.g. due to vignetting
of the light beam).

Note that this long string of factors will normally result is only modest
overall throughput. For instance, in a standard Cassegrain telescope
with 2 mirrors, 2 refractive elements, a filter with 75% transmission,
and a CCD with 50% QE, the net throughput is only 0.24. 75% of the
photons incident on the primary mirror have been lost!
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Reflectivities of common large mirror coatings
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Approximating the Flux Integral (equation 2):

If we substitute mean values in (2) above, we get:

Φi ≈
D2

e

(βL)2
< Ti >

< Fλ,i >

hν
∆λ

where ∆λ is the bandwidth of the filter. This is obviously a critical
term and should be carefully determined. A standard approach is to

compute ∆λ =
∫ Rf(λ)

R0
dλ, where R0 is the peak response of the filter.

Values for the standard UBV filters are given below, and plots of the
UBVRI responses are given on the next page.

Band < λ > (Å) ∆λ (Å)

U 3600 560
B 4400 990
V 5500 880

If the bandwidth is particularly large, the source energy distribution
changes significantly across the band, or T (λ) is not well represented by
a top-hat function, then good results may require that the actual
integral be evaluated.
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Standard UBVRI broad-band filter response curves (KPNO)
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Predicting Signal-to-Noise:

To complete evaluation of equation (1):

Evaluate Φs,i for the source by entering < Fλ,i > for a compact source
and the appropriate βs; or entering < F ′

λ,i > for an extended source
with βs = 1. For a point source, βs is the FWHM of the point spread
function of the telescope+atmosphere in arcseconds.

Then the term ṡ in equation (1) is

ṡ = Φs,i y2
p

where yp is the size of one pixel in cm (assuming square pixels).

This expression applies for those pixels which are within the projected
image of the source. If the source is compact, such that its light is
completely contained within the source measuring aperture of N pixels,
then

Nṡ = Φs,i

π

4
(βL)2

If the source is not contained within the N pixels but is also not well
approximated by a uniform surface brightness, then you must estimate
the total flux in the source aperture using an assumed spatial profile.

Then evaluate Φb,i for the sky background by entering the < F ′
λ,b,i >

which is appropriate for the sky surface brightness, µb,i (typical values
for dark sites are given in Lecture 7). Use βs = 1. Then:

ḃ = Φb,i y2
p

Obtain values for ḋ and nRON from published specifications for the
detector you are using.

Substitute all of the above into equation (1).

It is easiest to solve equation (1) numerically for various sets of
assumptions. The most common approaches are: (i) to solve for SNR
given source/background brightnesses and exposure time t; (ii) to solve
for t given source/background brightnesses and SNR; and (iii) to solve
for the source brightness given SNR, t, and the background.

Remember that a threshold detection requires SNR ∼ 5 − 10.

For a plot of a type (ii) evaluation for the 40-in CCD system in the
V-band, see the next page.
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Example estimate of integration times for the 40-in CCD
imaging system including the effects of source noise, sky

background, and readout noise.

Note the change of slope at V ∼ 18, which is the transition
between sky background noise dominance (for fainter sources)

and source photon noise dominance (for brighter sources).
Because this is a log-log diagram, such small changes in slope

have large impacts in practice.
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Limiting Cases (Point Sources):

The dependence of the results on the parameters of the telescope plus
instrument system are best illustrated in limiting cases.

(1) Source limited: ṡ >> ḃ

SNR ∼ De

√
Fλ T ∆λ t

(2) Sky background limited: ḃ >> ṡ (assuming M >> N)

SNR ∼ De Fλ

√
T ∆λ t
NF ′

λ,b,i

Note that in both cases,

t ∼
(SNR)2

D2
e T ∆λ

This implies, as noted in Lecture 7, that it is expensive in observing time to
increase SNR. There is also an important advantage for larger telescopes.
However, the dependence on Fλ,i is very different in the two cases. In the
sky limited case, t ∼ F −2

λ , meaning that faint sources become very difficult
to detect.

(3) A final interesting case is the sky background limit for a point source
with a diffraction limited telescope, for which β ∼ 2.4 λ/De. Here, we
assume the source measuring aperture is decreased in proportion to β. Then

t ∼
λ2

D4
e

(SNR)2

Here, there is an enormous advantage for larger telescopes. This case
applies in practice to optical-IR space telescopes (HST, JWST) or to large
ground-based telescopes operating in the IR region using “adaptive optics”
to eliminate the image smearing from the Earth’s atmosphere.
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One caveat, among others: the IR sky background from the Earth’s
atmosphere is strongly variable and is not well approximated by Poissonian
statistics.

Final Remarks:

On-line Exposure Time Calculators are for specific instruments. They
include all the relevant information on T , Rf , Q, and so forth, and produce
real integrals across the bandwidth. They generally accept a number of
different ways of specifying or estimating source brightness. They usually
include a high-resolution version of the background sky spectrum, so the
effects of strong sky emission lines are properly estimated.

Finally, remember that equation (1) is a prediction of SNR for a specific set
of assumptions about the measuring process.

The best way to judge the true SNR of an observation is to analyze the
scatter in repeated measures.

Therefore, you should always break an observation up into
multiple parts (assuming it is not dark or readout-noise limited) in order
to assess statistical scatter as well as to reduce the effects of cosmic
rays, flat field uncertainties, etc.


