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STATISTICS OF OBSERVATIONS &
SAMPLING THEORY

References:

Bevington “Data Reduction & Error Analysis for the
Physical Sciences”

LLM: Appendix B

Warning: the introductory literature on statistics of
measurement is remarkably uneven, and nomenclature is
not consistent.

Is error analysis important? Yes! See next page.

Parent Distributions

Measurement of any physical quantity is always affected by
uncontrollable random (“stochastic”) processes. These produce
a statistical scatter in the values measured.

The parent distribution for a given measurement gives the
probability of obtaining a particular result from a single
measure. It is fully defined and represents the idealized
outcome of an infinite number of measures, where the random
effects on the measuring process are assumed to be always the
same (“stationary”).
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Precision vs. Accuracy

• The parent distribution only describes the stochastic scatter
in the measuring process. It does not characterize how
close the measurements are to the true value of the
quantity of interest. Measures can be affected by
systematic errors as well as by random errors.

In general, the effects of systematic errors are not manifested as
stochastic variations during an experiment. In the lab, for instance,
a voltmeter may be improperly calibrated, leading to a bias in all
the measurements made. Examples of potential systematic effects
in astronomical photometry include a wavelength mismatch in CCD
flat-field calibrations, large differential refraction in Earth’s
atmosphere, or secular changes in thin clouds.

• Distinction between precision and accuracy:

o A measurement with a large ratio of value to statistical
uncertainty is said to be “precise.”

o An “accurate” measurement is one which is close to the
true value of the parameter being measured.

o Because of systematic errors precise measures may not
be accurate.

o A famous example: the primary mirror for the Hubble
Space Telescope was figured with high precision (i.e. had
very small ripples), but it was inaccurate in that its
shape was wrong.

• The statistical infrastructure we are discussing here does
not permit an assessment of systematic errors. Those must
be addressed by other means.
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Moments of Parent Distribution

The parent distribution is characterized by its moments:

• Parent probability distribution: p(x)

• Mean: first moment. µ ≡
∫

x p(x) dx

• Variance: second moment.

V ar(x) ≡
∫

(x − µ)2 p(x) dx

• “Sigma”: σ ≡
√

V ar(x)

• Aliases: σ is the standard deviation, but is also known as
the “dispersion” or “rms dispersion”

• µ measures the “center” and σ measures the “width” of
the parent distribution.

NB: the mean can be very different from the median (50th

percentile) or the mode (most frequent value) of the parent

distribution. These represent alternative measures of the

distribution’s “center.” But the mean is the more widely used

parameter.
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Poisson Probability Distribution

Applies to any continuous counting process where events are
independent of one another and have a uniform probability of
occurring in any time bin.

The Poisson distribution is derived as a limit of the “binomial
distribution” based on the fact that time can be divided up into small
intervals such that the probability of an event in any given interval is
arbitrarily small.

If n is the number of counts observed in one δt bin, then

pP (n) = µn

n!
e−µ

Properties:

∞∑
n=0

pP (n) = 1

Asymmetric about µ; mode ≤ µ

Mean value per bin: µ. µ need not be an integer.

Variance: µ

Standard deviation: σ =
√

µ

Implies mean/width = µ/
√

µ =
√

µ

→ “Square root of n statistics”

NB: the Poisson distribution is the proper description of a uniform

counting process for small numbers of counts. For larger numbers

(n & 30), the Gaussian distribution is a good description and is easier

to compute.
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SAMPLE POISSON DISTRIBUTION
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POISSON AND GAUSSIAN COMPARED
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Gaussian Probability Distribution

The Gaussian, or “normal,” distribution is the limiting form of
the Poisson distribution for large µ (& 30)

Probability distribution:

pG(x) = 1

σ
√

2π
exp [− 1

2
(x−µ

σ
)2 ]

Properties:

+∞∫
−∞

pG(x) dx = 1

“Bell-shaped” curve; symmetric about mode at µ

Mean value: µ (= median and mode)

Variance: σ2

Full Width Half Maximum = 2.355 σ

If refers to a counting process (x = n in bin), then σ =
√

µ

Importance:

The “central limit theorem” of Gauss demonstrates that a Gaussian

distribution applies to any situation where a large number of

independent random processes contribute to the result. This means it is

a valid statistical description of an enormous range of real-life

situations. Much of the statistical analysis of data measurement is

based on the assumption of Gaussian distributions.
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SAMPLE GAUSSIAN DISTRIBUTION (Linear)
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SAMPLE GAUSSIAN DISTRIBUTION (Log)
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Chi-Square Probability Distribution

The Chi-Square (χ2) function gives the probability distribution
for any quantity which is the sum of the squares of
independent, normally-distributed variables with unit variance.
In the method of maximum likelihood it is important in testing
the functional relationship between measured quantities.

Probability distribution:

pχ(χ2, ν) =
1

2ν/2 Γ(ν/2)
(χ2)0.5(ν−2) exp[−χ2/2]

...where the Gamma function is defined as follows:

Γ(n + 1) = n! if n is an integer

Γ(1/2) =
√

π and Γ(n + 1) = nΓ(n) if n is half-integer

Properties:

Only one parameter, ν, the “number of degrees of freedom.” ν = the
number of independent quantities in the sum of squares.

Mean and mode: ν. Variance: 2ν

Asymmetric distribution
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Sampling Theory

In practice, we usually do not know the parameters of the
parent distribution because this requires a very large number of
measures. Instead, we try to make inferences about the parent
distribution from finite (& often small) samples. Sampling
theory describes how to estimate the moments of p(x).

The results here are based on applying the “method of
maximum likelihood” to variables whose parent distribution is
assumed to be stationary and normally distributed.

Suppose we obtain a sample consisting of M measurements of
a given variable characterized by a normal distribution (with
mean µ and standard deviation σ). Define the following two
estimators:

• Sample mean: x̄ ≡ 1
M

M∑
i=1

xi

• Sample variance: s2 ≡ 1
M−1

M∑
i=1

(xi − x̄)2

These two estimators have the property that as M → ∞,

x̄ → µ and s2 → σ2



ASTR 511/O’Connell Lec 6 13

SAMPLING THEORY (cont)

How well determined is x̄?

The “uncertainty” in x̄ is its variance. But this is not the
same as the variance in x. x̄ is a random variable, and its
variance can be computed as follows:

s2
x̄ ≡ V ar(x̄) = 1

M2

M∑
i=1

V ar(xi) = 1
M

V ar(x)

s2
x̄ ∼ 1

M
s2

s2
x̄ ∼ 1

M(M−1)

M∑
i=1

(xi − x̄)2

sx̄ is known as the “standard error of the mean”

Important! sx̄ << σ if M is large.

The distinction between σ and sx̄ is often overlooked by
students and can lead to flagrant overestimation of errors in
mean values.

The mean of a random variable can be determined very
precisely regardless of its variance. This demonstrates the
importance of repeated measurements...if feasible.
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SAMPLING THEORY (cont)

Probability Distribution of x̄:

By the central limit theorem, if we repeat a set of M
measures from a given parent distribution a large number of
times, the resulting distribution of x̄M will be a
normal distribution regardless of the form of the parent
distribution p(x). It will have a standard deviation of
σ/

√
M .

Inhomogeneous samples:

A sample is inhomogeneous if σ of the parent distribution is
different for different measurements. This could happen
with a long series of photometric determinations of a
source’s brightness, for instance.

Here, the values entering the estimates of the sample mean
and variance must be weighted in inverse proportion to
their uncertainties. The following expressions assume that
the variance of each measurement can be estimated in
some independent way:

Sample mean: x̄ =
M∑
i=1

wixi /
M∑
i=1

wi

Variance of the mean: s2
x̄ = 1/

M∑
i=1

wi

... where wi = 1
σ2

i
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The “Signal-to-Noise Ratio” (SNR) for Flux
Measurements

We adopt the sample mean x̄ as the best estimate of the
flux and sx̄, the standard error of the mean (not the
standard deviation of the parent distribution), as the best
estimate of the uncertainty in the mean flux.

Our working definition of signal-to-noise ratio is then:

SNR ≡ x̄/sx̄

sx̄ here must include all effects which contribute to random
error in the quantity x.

This is a basic “figure of merit” that should be considered in
both planning observations (based on expected performance
of equipment) and in evaluating them after they are made.
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Propagation of Variance to Functions of
Measured Variables

If u = f(x, y) is a function of two random variables, x and y,
then we can propagate the uncertainty in x and y to u as
follows:

σ2
u = σ2

x

(
∂u

∂x

)2

+ σ2
y

(
∂u

∂y

)2

+ 2σ2
xy

(
∂u

∂x

) (
∂u

∂y

)

where the “covariance” of x and y is defined as

σxy ≡ lim
M→∞

1

M

∑
i

[(xi − x̄)(yi − ȳ)]

For independent random variables, σxy = 0.

So, we obtain for the following simple functions:

V ar(kx) = k2 V ar(x) if k is a constant

V ar(x + y) = V ar(x) + V ar(y) + 2σ2
xy

V ar(xy) = y2 V ar(x) + x2 V ar(y) + 2xyσ2
xy
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Confidence Intervals

A “confidence interval” is a range of values which can be
expected to contain a given parameter (e.g. the mean) of the
parent distribution with a specified probability. The smaller the
confidence interval, the higher the precision of the measure.

(A) In the ideal case of a single measurement drawn from a
normally-distributed parent distribution of known mean and
variance, confidence intervals for the mean in units of σ are
easy to compute in the following form:

P (±kσ) =

µ+kσ∫
µ−kσ

pG(x, µ, σ)dx

where pG is the Gaussian distribution. Results from this
calculation are as follows:

k P (±kσ)

0.675 0.500
1.0 0.683
2.0 0.954
3.0 0.997

Intepretation: A single measure drawn from this distribution
will fall within 1.0 σ of the mean value in 68% of the
samples. Only 0.3% of the samples would fall more than
3.0 σ from the mean.
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CONFIDENCE INTERVALS (cont)

(B) In the real world, we have only estimates of the properties
of the parent distribution based on a finite sample. The
larger the sample, the better the estimates, and the smaller
the confidence interval.

To place confidence intervals on the estimate of the parent
mean (µ) based on a finite sample of M measures, we use
the probability distribution of the “Student” t variable:

t = (x̄ − µ)
√

M/s

where s2 is the sample variance. The probability distribution
of t depends on the number of degrees of freedom, which in
this case is M − 1. The probability that the true mean of
the parent distribution lies within ±t sx̄ of the sample mean
is estimated by integrating the Student t-distribution from
−t to +t.

P (µ ∈ x̄ ± t sx̄)

t M = 2 M = 10 M = ∞

0.5 0.295 0.371 0.383
0.6745 0.377 0.483 0.500
1.0 0.500 0.657 0.683
2.0 0.705 0.923 0.954
3.0 0.795 0.985 0.997
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CONFIDENCE INTERVALS (cont)

Interpretation & comments on the t-distribution results:

• Entries for M = ∞ correspond to those for the Gaussian
parent distribution quoted earlier, as expected.

• Values for small M can be very different than for M = ∞.
The number of observations is an important determinant of
the quality of the measurement.

• The entry for 0.6745 is included because the formal
definition of the “probable error” is 0.6745 sx̄. For a large
number of measures, the probable error defines a 50%
confidence interval. But for small samples, it is a very weak
constraint.

• A better measure of uncertainty is the standard error
of the mean, sx̄, which provides at least a 50% confidence
interval for all M .

• Careful authors often quote “3 σ” confidence intervals.
This corresponds to t = 3 and provides 80% confidence for
two measures and 99.7% for many measures. It is a strong
contraint on results of a measurement.

• NB; the integrals in the preceding table were derived from an IDL
built-in routine. The table contains output from the IDL statement:
P = 2*T PDF(t,M-1)-1.
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GOODNESS OF FIT (χ2 TEST)

Widely used standard for comparing an observed distribution
with a hypothetical functional relationship for two or more
related random variables. Determines the likelihood that the
observed deviations between the observations and the expected
relationship occur by chance. Assumes that the measuring
process is governed by Gaussian statistics.

Two random variables x and y. Let y be a function of x and a
number k of additional parameters, αj: y = f(x; α1...αk).

1. Make M observations of x and y.

2. For each observation, estimate the total variance in the yi

value, σ2
i

3. We require f(x; α1...αk). Either this must be known
a priori, or it must be estimated from the data (e.g. by
least squares fitting).

4. Then define

χ2
0 =

M∑
i

(
yi − f(xi)

σi

)2

5. The probability distribution for χ2 was given earlier. It
depends on the number of degrees of freedom ν. If the k
parameters were estimated from the data, then ν = M − k.

6. The predicted mean value of χ2 is ν.
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7. The integral P0 =
∞∫
χ2

0

p(χ2, ν)dχ2 then determines the

probability that this or a higher value of χ2
0 would occur by

chance.

8. The larger is P0, the more likely it is that f is correct.
Values over 50% are regarded as consistent with the
hypothesis that y = f .

9. Sample values of χ2 yielding a given P0:

P0 ν = 1 ν = 10 ν = 200

0.05 3.841 1.831 1.170
0.10 2.706 1.599 1.130
0.50 0.455 0.934 0.997
0.90 0.016 0.487 0.874
0.95 0.004 0.394 0.841

10. Generally, one uses 1 − P0 as a criterion for rejection of the
validity of f :

E.g. if P0 = 5%, then with 95% confidence one can
reject the hypothesis that f is the correct description of
y.

11. Important caveat: the χ2 test is ambiguous because it
makes 2 assumptions: that f is the correct description of
y(x) and that a Gaussian process with the adopted σ’s
properly described the measurements. It will reject the
hypothesis if either condition fails.


