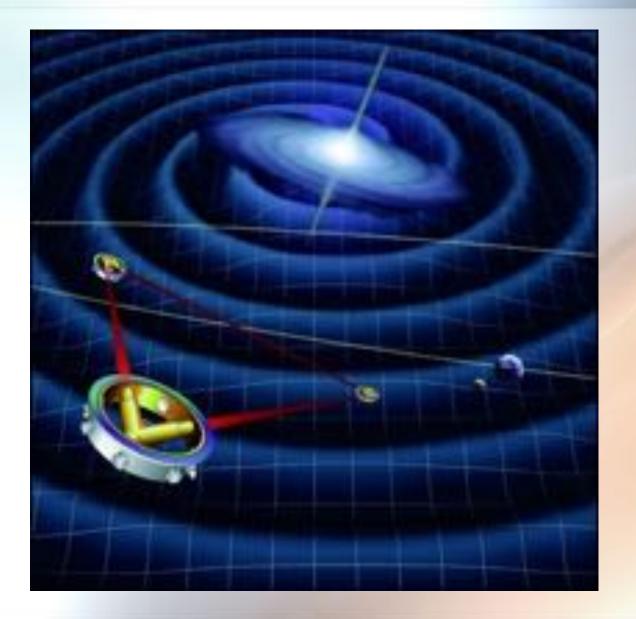
Top 5 Problems in Modern Astrophysics For the Next 10 Years

Cheng-yu Kuo George B. Trammell

Our Top 5 List:

- 1. Detection of gravitational waves
- 2. Population III stars & the epoch of reionization
- 3. How did galaxies form and evolve?
- 4. What is the nature of Dark Matter?
- 1. What is the nature of Dark Energy?


Detection of G. Waves:

- importance:
 - the need to verify General Relativity
 - LIGO (Laser Interferometer Gravitational-Wave Observatory) has never had a confirmed detection
 - probes for astrophysical objects (e.g., can penetrate CMB)
 - predicted waveforms from merging NS, WDs, BHs
- the next 10 years:
 - LISA (2015)
 - LIGO2 (?)
 - if not detected, something wrong w/ GR

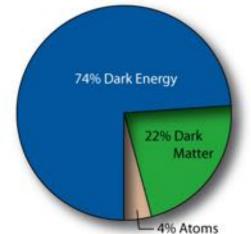
Detection of G. Waves:

Detection of G. Waves:

Pop. III Stars & Reionization:

- importance:
 - before Pop. III stars, Universe has only H, He, Li
 - no metals = no CNO cycle, higher Jeans mass
 - Pop. III stars + first quasars produce reionization (affects large-scale structure formation)
 - want more accurate z of reionization (z ~ 11 from WMAP and z > 6.4 from quasars)
 - Pop. III stars never seen directly
- the next 10 years:
 - JWST
 - SWIFT
 - PAPER → indep. observation of reionization at high z

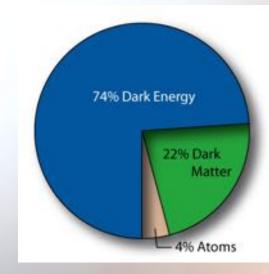
How Did Galaxies Form & Evolve:


- background:
 - mass estimates of galaxies, morphologies, MFs, LFs, global properties
 - large samples at low z (SDSS, 2MASS, DSS, etc.)
 - SMBH at centers of all galaxies? (e.g., role in formation, M-σ relation, effects of environment)
 - hierarchical structure formation
 - simulations overpredict low-L and high-L galaxies
 - at what wavelengths can they first be seen?

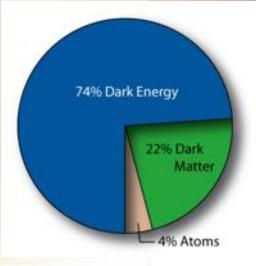
How Did Galaxies Form & Evolve:

- the next 10 years:
 - ALMA (far-IR, sub-mm) → primordial galaxies!
 - JWST (near-IR, mid-IR) \rightarrow high-z
 - large surveys (e.g., SDSS-II, LSST)

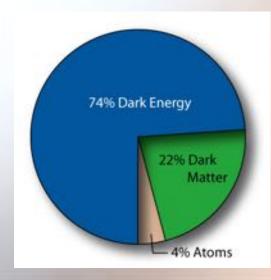
What is the Nature of Dark Matter?


- importance:
 - galactic rotation curves
 - M/L ratios of clusters
 - large-scale structure
- possible explanations:

- baryonic (e.g., MACHOs, brown dwarfs)
- non-baryonic (e.g., neutrinos, hot/warm/cold DM)
- MOND


What is the Nature of Dark Matter?

- the next 10 years:
 - LHC
 - ILC
 - ArDM


What is the Nature of Dark Energy?

- importance:
 - accelerating expansion from high-z la SNe
 - WMAP cosmology how much DE there has to be to make Universe flat ($\rho = \rho_{crit}$)
 - large discrepancy between theory of vacuum energy density vs. observation (10¹²⁰!)
- explanations:
 - cosmological constant
 - quintessence
 - modified laws of gravity

What is the Nature of Dark Energy?

- the next 10 years:
 - want to distinguish different models
 - determine EOS parameter (w)
 - ground-based surveys: SDSS II, LSST, SNLS

Our Top 5 List:

- 1. Detection of gravitational waves
- 2. Population III stars & the epoch of reionization
- 3. How did galaxies form and evolve?
- 4. What is the nature of Dark Matter?
- 1. What is the nature of Dark Energy?

Other Problems:

- 1. Where are the missing baryons?
- 2. What causes GRBs?
- 3. How can we explain UHECRs above the GZK cutoff?
- 4. How do high mass stars form?
- 5. How can we detect extrasolar terrestial planets?

Discussion