JAMES WEBB SPACE TELESCOPE

PLANNED LAUNCH: 30 MARCH 2021

Proposal Planning for the James Webb Space Telescope

Dana Anderson & Christian Eistrup ASTR 8500 February 11, 2020

Artist conception from NASA

The Hubble Space Telescope successor

Introduction to JDox

https://jwst-docs.stsci.edu

James Webb Space Telescope User Documentation					
Home Quick Links +			Search		٩
Proposing Opportunities • JWST Opportunities and Policies • Cycle 1 Call for Proposals	Home JWST User Documentation Home Release Information:			<u>"</u>	
 Early Release Science Call for Proposals 	Relea	se Date	January 23, 2020		
Guaranteed Time	Cycle	b.	1		
Observations Call for Proposals	APT	Version	2020.1.1		
Science Policies	ETC	/ersion	1.5.1 (after Jan. 27, 2020)		
Proposal Preparation	About JDox				

Space vs. Ground Telescopes

History of Space Missions

Cold War

1837

Discussions of Moon-based observatory 1965-1968 Soviet Proton program

1968-1972 NASA sent the Orbiting Astronomical Observatory (OAO) satellites

1946 Lyman Spitzer proposed sending a large telescope to space

1970s-1980s

Post-Apollo era, more effort was focused on space observatories and by more nations

Lyman Spitzer lobbied US Congress

History of Space Missions

Originated 1996: Next Generation Space Telescope (NGST) 2002-: JWST

Collaboration among NASA, European Space Agency and Canadian Space Agency

Administrator: 1961-1968

Space Race

Named after NASA's 2nd Administrator

Designing and building it

Year	Planned launch	Budget Plan (Billion USD)		
1997	2007 ^[75]	0.5 ^[75]		
1998	2007[80]	1 ^[50]		
1999	2007 to 2008 ^[81]	1 ^[50]		
2000	2009 ^[38]	1.8 ^[50]		
2002	2010 ^[82]	2.5 ^[50]		
2003	2011 ^[83]	2.5 ^[50]		
2005	2013	3 ^[84]		
2006	2014	4.5 ^[85]		
20	008, Preliminary De	esign Review		
2008	2014	5.1 ^[86]		
	2010, Critical Desi	ign Review		
2010	2015 to 2016	6.5[citation needed		
2011	2018	8.7 ^[87]		
2013	2018	8.8 ^[88]		
2017	2019 ^[89]	8.8		
2018	2020 ^[90]	≥8.8		
2018	2021 ^[91]	9.66		

10 years out

Now: 1 year out

Getting out there

Science goals

- The primary aim is to examine the first light in the Universe - those objects which formed shortly after the Big Bang.
- Further aims include: looking at how galaxies form and evolve, studying the birth of stars and planets, looking at our own Solar System, and studying the properties of exoplanets.

Activity: Select an Observing Program

http://www.stsci.edu/jwst/observing-programs

Science Observations with JWST

Learn more about the approved JWST observing programs:

- Program Information lookup tool
- Approved ERS programs
- Approved GTO programs

JWST Instruments & Observing Modes

- Time Series Imaging
- Coronagraphy
- Aperture Masking Interferometry

Spectroscopy

- Integral Field Spectroscopy
- Multi-Object Spectroscopy
- Single-Object & Time-Series
 Spectroscopy
- Wide-Field Slitless Spectroscopy

Single-Slit & Slitless Spectroscopy

Generic example (not JWST-based) using a slit:

Generic MIRI Spatial y (not JWST-based) NIRSpec spectrograph: Spatial x Spatial x Wavelength Generic example (not JWST-based) w NIRCam using a slit: **NIRISS** Telescope Spatial y **MIRI** Slit

Spatial x

Spatial x & Wavelength

http://slittlefair.staff.shef.ac.uk/teaching/phy217/lectures/instruments/L16/index.html

Integral Field Spectroscopy

MIRI NIRSpec

Figure from STScI JDox

Multi-Object Spectroscopy Micro-Shutter Assembly (MSA)

Each shutter is 80 x 180 microns in size

Image credits: NASA

Time Series Observations

- When the duration of an astronomical event is setting the conditions for observations
- NIRCam, NIRSpec, NIRISS and MIRI all have this mode
- NIRCam/NIRSpec/NIRISS: 0.6-5µm
- MIRI: 4.8-28.5µm
- Different spectral resolving powers
- Different signal/noise achieved for same observing time

NIRISS Single Object Slitless Spectroscopy

- Charles and the second second
- Understanding Exposure Times
- * Methods and Roadmaps
- Example Science Programs
- Observing Strategies
-) Duplication Checking
- Observatory Functionality

Steps for creating observations

- Step 3 Determine the required wavelength coverage: near-infrared or mid-infrared
- Step 2: Select an instrument observing mode -
- Step 3 Determine the readout pattern and subarray configuration.
- # Step-4 Calculate required exposure configuration using the JWST Exposure Time Calculator (ETC)
- 8 Step 5 Use PandExs for more detailed modeling of spectroscopic exoplanet transits
- Step 5 Determine whether target acquisition is required and use the ETC to determine the appropriate strategy
- Step 7 Complete the Astronomer's Properail Tool (APT) template
- + References

Coronagraphy/HCI

- "Masking out"/removing signal from star
- NIRCam: Planet/star contrast 10⁻⁸-10⁻⁷
- MIRI: Planet/star contrast 10⁻⁶-10⁻⁵

Aperture-Masked Interferometry NIRISS

Aperture-Masked Interferometry

Transforms JWST into an interferometer like ALMA or VLA
Light lost, but spatial resolution gained!
From Rayleigh diffraction limit (1.22 x wavelength/diameter)
To Michelson diffraction limit (~0.5 x wavelength/diameter)

Activity: Exploring Observing Programs

http://www.stsci.edu/jwst/observing-programs

- 1. What are the main science questions that the observations will address?
- 2. What objects and/or phenomena are being targeted?
- 3. What instruments and observing modes are used?
- 4. Can you find a corresponding Example Science Program on JDox that walks you through the process of setting up similar observations?

JWST General Observing Proposals

What is expected in a proposal?

- Science case motivating questions to address, concrete science goals and observations to address them, why this observatory is necessary to address the questions
- Observational settings to achieve goals sensitivity, spectral/spatial resolution, field of view, overall time of observations
- Source selection select targets, source visibility, check for duplicates
- **Predict observations** based on previous observations or theoretical models, estimate observing time needed

Brainstorming Proposal Ideas

- Science case What scientific question would you like to answer? What observations could address this?
- **Observational settings** Imaging? Spectroscopy? Time Series?
- Source selection What types of sources would you need to observe?
- **Predict observations** What information or models would you need to make predictions?

JWST Proposal Roadmap

Pick instruments(s) and observing mode(s)

Determine target visibility

Check for duplicates

Set up proposed observing program in the Astronomer's Proposal Tool (APT)

Prepare your proposal document

Scientific justification **Technical justification**

Time Allocation Committee (TAC) meets

- - Accepted proposals: Optimize settings with STScI
 - (US Investigators) Apply for funding in Oct. 2020

Get Involved with JWST

Resources:

• STScI Website & JDox

How to get involved:

- Talk to your advisors & mentors about opportunities to get involved with JWST
- NRAO/UVA Proposal Planning Workshop
 - Dates: Feb. 18 & 24 (Registration deadline tomorrow)
 - http://people.virginia.edu/~da4vn/jwst.html

Imaging Modes

Spectroscopy Modes

